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In this paper we report that there are two different types of destruction of the phase synchronization �PS�
regime of chaotic oscillators depending on the parameter mismatch as well as in the case of the classical
synchronization of periodic oscillators. When the parameter mismatch of the interacting chaotic oscillators is
small enough, the PS breaking takes place without the destruction of the phase coherence of chaotic attractors
of oscillators. Alternatively, due to the large frequency detuning, the PS breaking is accomplished by loss of the
phase coherence of the chaotic attractors.
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INTRODUCTION

Phase synchronization �PS� of chaotic oscillators ob-
served in many systems �physical, technical, chemical, bio-
logical, physiological, etc.� has attracted great attention of
scientists recently �1–3�. PS has practical importance �4,5�,
with the PS concept involving the problems of the phase
coherence of the chaotic attractor �6,7� and the occurrence
�destruction� of the PS regime �8,9�.

The scientists usually do not distinguish between types of
the PS regime destruction. As an exception we can mention
work �9� where the existence of three types of transitions to
PS regime in the coupled oscillators depending on the coher-
ence properties of oscillations were described. Contrary to
the conclusion obtained in �9�, in this paper we report that
there are two different types of the PS regime destruction
depending on the detuning of the system control parameters
as well as in the case of the classical synchronization of the
periodic oscillators. We find the following: that when the
parameter mismatch of the interacting chaotic oscillators is
small enough the PS breaking takes place without destruc-
tion of the phase coherence of chaotic attractors of oscilla-
tors, whereas for the large parameter detuning with the de-
crease of the coupling strength between oscillators �or the
amplitude of the external signal� the PS breaking is accom-
panied by the loss of the phase coherence of the chaotic
attractors. To make our arguments more convenient we com-
pare our methods and results with the ones described in work
�9�.

The structure of this paper is the following. Section I
presents two scenarios of the destruction of the PS regime in
the unidirectionally coupled Rössler oscillators. Section II
explains the mechanisms resulting in these scenarios of the
PS destruction. Section III shows the relationship between
Lyapunov exponents and the PS synchronization boundary.
Section IV displays the PS regime destruction in the systems
with initially incoherent chaotic attractors. Section V pro-
vides the final conclusion.

I. DESTRUCTION OF PHASE SYNCHRONIZATION
REGIME IN TWO UNIDIRECTIONALLY COUPLED

RÖSSLER SYSTEMS

Let us start our consideration with two unidirectionally
coupled Rössler systems,

ẋd = − �dyd − zd,

ẏd = �dxd + ayd,

żd = p + zd�xd − c� ,

ẋr = − �ryr − zr + ��xd − xr� ,

ẏr = �rxr + ayr,

żr = p + zr�xr − c� , �1�

where � is a coupling parameter. The control parameter val-
ues have been selected by analogy with Refs. �10,11� as a
=0.15, p=0.2, c=10.0. The �r parameter, which determines
the main frequency of the response system has been selected
as �r=0.95, and the analogous parameter �d of the drive
system has been varied in the range from 0.8–1.1 providing
the mismatch of the interacting oscillators. The above-
mentioned control parameter values provide the phase coher-
ence of chaotic attractors of both drive and response systems
for zero coupling strength.

In Fig. 1 the PS area on the parameter plane ��d ;�� is
shown. Following Ref. �9� we use two criteria to detect the
presence of the PS regime. First, in the regime of the PS,
locking of the mean frequencies
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FIG. 1. �Color online� The PS area on the ��d ,�� plane. The PS
boundary is shown in the range of the small parameter mismatch
�the bold solid line� of coupled oscillators as well as in the range of
the large one �the thin solid line�. The chaotic attractor is incoherent
in the region shown in gray. The lower bound of the attractor non-
coherence area is shown by the dashed line.
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�d = � d�d�t�
dt

� = �r = � d�r�t�
dt

� �2�

should take place, where �·� denotes the time average, �d and
�r are instantaneous phases of drive and response oscillators,
respectively. Second, the presence of PS may be detected by
means of the examination of the phase locking condition
�1–3,12�

	�d�t� − �r�t�	 � const, �3�

with the instantaneous phase of the chaotic signal being in-
troduced in a traditional way as the rotation angle �
=arctan�y /x�.

Examining the behavior of two unidirectionally coupled
Rössler systems �1� we have found two different types of the
PS regime destruction. When the parameter mismatch of the
interacting chaotic oscillators is large enough, the PS break-
ing is accompanied by the loss of the phase coherence of the
chaotic attractors, whereas for the small parameter detuning
with the decrease of the coupling strength between oscilla-
tors PS breaking takes place without destruction of the phase
coherence of chaotic attractors of oscillators. According to
Refs. �1,3� the attractor is phase coherent when the phase
trajectory rotates around the origin of the projection plane
without crossing it. Alternatively, the attractor is supposed to
be incoherent.

In Figs. 2�a� and 2�b� the chaotic attractors of the re-
sponse Rössler system and the dependence of the phase dif-
ference �d�t�−�r�t� on time t are shown below and above the
onset of the PS regime for the small mismatch of � param-
eters. One can easily see that with the decrease of the cou-
pling strength � the PS regime is destroyed, with the chaotic
attractor remaining phase coherent. For the large mistuning
of the system control parameters the different scenario of the
PS destruction takes place �see Figs. 2�c� and 2�d��. Below
the boundary of the PS area the chaotic attractor of the re-
sponse Rössler system loses its phase coherence.

Since the notion of the attractor coherence plays the key
role in the chaotic synchronization theory, the quantitative
measure for the phase coherence should be defined. The
measure of coherence may be characterized by means of the
minimal distance � between the points of the phase trajectory
and the origin

� = min
t→+�


x2�t� + y2�t� , �4�

where x�t�, y�t� are the coordinates of the phase trajectory
projection. Obviously, ��0 for the phase coherent chaotic
attractor, and � becomes equal to zero when the attractor
loses its coherence.

In Ref. �9� the coherence of the chaotic attractor of the
system under study was characterized by the sequence of the
local maxima of y�t�, i.e., max�y�. The chaotic attractor is
incoherent when some max�y��Y0 occurs, where �X0 ,Y0�
��0,0� is the fixed point around which the phase trajectory
rotates. Such criterion is limited, since only one coordinate is
considered. Our definition �4� of the coherence measure al-
lows one to generalize the approach used in Ref. �9� in such
a way for both coordinates to be taken into account.

The dependencies of the coherence measure � of the cha-
otic attractor of the response system on the coupling strength
� are shown in Fig. 3 for both small �curve 1� and large
�curve 2� parameter mismatches.

One can easily see that for small detuning of the control
parameters �curve 1 in Fig. 3� the measure of the coherence
� is positive for all values of the coupling strength, whereas
for the large parameter mistuning �curve 2 in Fig. 3� there is
an area just below the PS boundary where the coherence
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FIG. 2. �Color online� Attractors of the response Rössler system
�1� and the dependencies of the phase differences 	��t�=�d�t�
−�r�t� on time t for small detuning ��d=0.91� of the drive Rössler
system �a� above ��=0.08� and �b� below ��=0.075� the onset of
the PS regime. Analogous figures for the large ��d=1.00� detuning
of the �d parameter: �c� � is above ��=0.127� and �d� below ��
=0.123� the PS boundary.
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FIG. 3. �Color online� The dependencies of the coherence mea-
sure � on the � parameter for the small �curve 1� and large �curve 2�
system parameter mismatches. The arrows show the values of the
coupling strength � corresponding to the PS destruction.
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measure is equal to zero. Therefore, it is evident that the
chaotic attractor loses its coherence when the PS regime is
destroyed in the case of large parameter detuning and re-
mains phase coherent both below and above the PS boundary
if parameter mistuning is small enough.

The area on the plane ��d ,�� where the chaotic attractor
of the response system is incoherent is shown in Fig. 1 in
gray. This region is joined close to the boundary of the PS
regime for the �d values detuned essentially from the �r
parameter of the response Rössler system. Therefore, we can
come to the conclusion that depending on the mistuning of
the control parameters of system �1� the PS destruction oc-
curs in two different ways: the mechanisms resulting in these
types of PS destruction are supposed to be dissimilar.

Therefore, the different manifestations of these mecha-
nisms may be observed in the vicinity of the PS boundary. In
particular, two different types of the pretransitional behavior
revealed below the PS boundary may be considered as an
indication of different mechanisms governing the scenarios
of the PS destruction. Indeed, it was found that the type-I
intermittency and the superlong laminar behavior �so-called
“eyelet intermittency” �13�� take place for small differences
in the natural frequencies of the drive and response systems
�13–17�, while, as far as large values of the natural frequency
differences are concerned, the ring intermittency emerges
�18�.

Let us show that both types of the synchronization de-
struction are also observed in the case of the driven periodic
oscillators. This topic is discussed in detail in the next sec-
tion.

II. PHASE SYNCHRONIZATION DESTRUCTION
OF THE VAN DER POL OSCILLATOR

One of the approaches allowing one to reveal different
aspects of the synchronization phenomenon is the consider-
ation of the periodic oscillators �see., e.g., Refs. �19–22��.
Therefore, let us use the classical model of the synchroniza-
tion theory, namely, the van der Pol oscillator

ẍ − �
 − x2�ẋ + x = A sin��et� , �5�

driven by the external harmonic signal with the amplitude A
and frequency �e to explain the mechanisms causing the PS
regime destruction in the coupled Rössler systems �1�. The
value of the control parameter has been selected as 
=0.1.
Oscillations in this case are certainly not chaotic but we can
use the concepts of PS and the phase coherence of an attrac-
tor in the same way as it is done for the chaotic oscillators.
The phase of the van der Pol oscillator is introduced as the
rotation angle �=arctan�y /x� as well as for the Rössler sys-
tems �1� considered above, whereas the phase of the external
signal has been calculated as �e�t�=�et.

The synchronization area on the plane ��e ;A� is shown
for the driven van der Pol oscillator �5� in Fig. 4. As well as
for the unidirectionally coupled Rössler systems �1� de-
scribed in Sec. I, two scenarios of the PS destruction may be
observed. These two scenarios are illustrated in Fig. 5. The
attractors of the van der Pol oscillator driven by the external
harmonic signal �5�, and the dependencies of the phase dif-

ference 	��t�=��t�−�e�t� on time t are shown in Figs. 5�a�
and 5�b� for the small frequencies detuning ��0−�e� below
and above the onset of the PS regime �here �0= ��̇�t���1.0
is the natural frequency of the autonomous van der Pol os-
cillator�. Evidently, with the decrease of the amplitude of the
external signal A the PS regime is destroyed, with the attrac-
tor remaining phase coherent. Alternatively, for large mistun-
ing of the frequencies, the different scenario of the PS de-
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FIG. 4. �Color online� The PS area on the ��e ,A� plane for the
driven van der Pol oscillator. The PS boundary is shown in the
range of the small frequency mismatch �the bold solid line� as well
as in the range of the large one �the thin solid line�. The attractor is
incoherent in the narrow region shown in gray. The lower bound of
the attractor noncoherence area is shown by the dashed line.
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FIG. 5. �Color online� Attractors of the van der Pol oscillator
driven by the external harmonic signal �5� and the dependencies of
the phase difference 	��t�=��t�−�et on time t for small ��e

=0.98� frequency detuning �a� above �A=0.0250� and �b� below
�A=0.0230� the onset of the PS regime. Analogous figures for the
large ��e=0.9� detuning of the external signal frequency: �c� A is
above �A=0.0775� and �d� below �A=0.0750� the PS boundary.
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struction takes place �see Figs. 5�c� and 5�d��, since the
attractor loses its phase coherence below the boundary of the
PS area.

This statement may also be confirmed by means of the
dependencies of the coherence measure � of the attractor of
the driven van der Pol oscillator on the amplitude A of the
external signal given in Fig. 6 for both small and large fre-
quency mismatches ��0−�e�. Again, as in the case of
coupled Rössler systems �Fig. 3� the measure of the coher-
ence � is positive for all values of the amplitude of the ex-
ternal signal �curve 1 in Fig. 6�, if the frequencies �0 and �e
are detuned slightly, i.e., the attractor of the driven van der
Pol oscillator remains phase coherent both below and above
the PS boundary. As far as the large frequency mistuning is
considered �curve 2 in Fig. 6� there is a narrow range located
just below the PS boundary on which the coherence measure
� is equal to zero. Hence the attractor loses its phase coher-
ence when the PS regime is destroyed.

The area on the plane ��e ,A�, where the attractor of the
driven van der Pol oscillator �5� is incoherent, is shown in
Fig. 4 in gray. As in the case of Rössler systems �1� consid-
ered in Sec. I this region is joined closely to the boundary of
the PS regime �although the width of this area is less than in
the case of Rössler oscillators� when the frequency of the
external signal is detuned essentially from the natural fre-
quency of the van der Pol oscillator.

Thus, when the PS regime is destroyed, the evolution of
the attractor of the van der Pol oscillator �5� driven by the
external harmonic signal is the same as the evolution of the
attractor of the response Rössler �1� system with a decrease
of the coupling strength �, despite the fact that the Rössler
system dynamics is chaotic, and the van der Pol oscillator is
one-periodic. Therefore, we can assume that the destruction
of the PS regime is governed by the same mechanisms in
both cases, with the transition from a synchronous to an
asynchronous state of the van der Pol oscillator being pos-
sible to be explained analytically by means of the complex
amplitude method.

It is well known that there are two different scenarios for
synchronization destruction in a periodic oscillator driven by
an external force, corresponding to small and large detunings
between the natural and external signal frequencies �see, e.g.,
the tutorial �12��, respectively. Under certain conditions �i.e.,
for the periodically forced weakly nonlinear isochronous os-
cillator�, the complex amplitude method may be used to find
the solution describing the oscillator behavior in the form

x�t� = Re a�t�ei�t. �6�

For the complex amplitude a�t� one obtains the averaged
�truncated� equations

ȧ = − i�a + a − 	a	2a − ik , �7�

where � is the frequency mismatch, and k is the �renormal-
ized� amplitude of the external force. For the small � and
large k the stable fixed point on the plane of the complex
amplitude

a* = Aej� = const �8�

corresponds to the synchronous regime, with the synchroni-
zation destruction corresponding to the local saddle-node bi-
furcation associated with the global bifurcation of the limit
cycle birth. Note, in this case the amplitude of the originated
limit cycle is large initially. For the large frequency mis-
matches, the different mechanism of synchronization de-
struction is observed. With the decrease of the k value the
fixed point �stable node� on the complex amplitude plane
becomes sequentially a stable focus and an unstable focus
�via the Andronov-Hopf bifurcation�, with the limit cycle
originating with the infinitesimal amplitude. With the further
decrease of the k parameter, the amplitude of the limit cycle
grows from zero monotonically. In this case, the PS destruc-
tion is connected with the limit cycle location on the com-
plex amplitude plane �12�. When the limit cycle starts envel-
oping the origin, the synchronization regime begins to be
destroyed. Obviously, in this case the attractor loses its phase
coherence due to the fact that there are the moments of time
when the modulus of amplitude 	a�t�	 is equal to zero. As far
as the small frequency mismatch is concerned, the attractor is
always phase coherent due to 	a�t�	�0, ∀t� �−� ; +��.

Since the use of Eq. �6� for the application of the complex
amplitude method is equivalent to the transition to the re-
volving coordinate system, two mechanisms of the PS de-
struction described above may be easily revealed by means
of the consideration of the behavior of the driven oscillator
on the plane �x� ,y�� rotating with the frequency �e of the
external signal around the origin. These considerations of the
rotating plane may be made apparent by using the coordinate
transformation

x� = xr cos � + yr sin � ,

y� = − xr sin � + yr cos � , �9�

where �=�e�t� is the instantaneous phase of the external
signal.

In case of small frequency detuning ��0−�e� the stable
node is observed on the rotating plane �x� ;y�� for the syn-
chronized van der Pol oscillator �Fig. 7�a��. As soon as the
amplitude of the external signal starts to be below the PS
boundary, the local saddle-node bifurcation, associated with
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FIG. 6. �Color online� The dependence of the coherence mea-
sure � on the A parameter for the small �curve 1, �e=0.98� and
large �curve 2, �e=0.9� frequency mismatches. The arrows show
the values of the A parameter corresponding to the PS destruction.
In the frame the small part of the ��A� dependence near the point of
the PS destruction for the large frequency detuning is shown.
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the global bifurcation of the limit cycle birth, takes place and
on the �x� ,y�� plane the cycle with the initially large ampli-
tude is becoming observable �Fig. 7�b�� instead of the stable
node. As far as the large frequency difference ��0−�e� is
concerned a cycle �may be smeared, if the 
 parameter is not
small enough� should be found on the rotating plane both
below and above the PS boundary �Figs. 7�c� and 7�d��. With
the decrease of the intensity of the external signal the ampli-
tude of the cycle increases monotonically, with the destruc-
tion of the PS regime corresponding to the control parameter
value when the cycle starts to cross the origin �Fig. 7�d��.
When the cycle does not envelop the origin �see Fig. 7�c��,
the PS regime takes place.

Obviously, if the mechanisms causing the PS regime de-
struction are the same in the cases of both periodic and cha-
otic oscillators, one has to obtain the similar results for cha-
otic oscillators, too. Therefore, let us consider the dynamics
of coupled Rössler systems �1� on the rotating plane �9� in
the same way as it was done for the driven van der Pol
oscillator, with the phase �=�d�t� of the drive Rössler sys-
tem being used instead of the phase of the harmonic signal.

The results obtained for Rössler systems �1� are presented
in Fig. 8. For the small system parameter mismatch �Fig.
8�a�� the behavior of the synchronized response oscillator in
the vicinity of the PS boundary looks like a noise smeared
stable fixed point on the �x� ,y�� plane. This effect arises
insofar as the Rössler system may be considered as a noise
smeared periodic oscillator �see, e.g., Ref. �23��. When the
coupling strength between Rössler oscillators decreases and
the PS regime is destroyed, the stable noise smeared fixed
point disappears and, in full agreement with the dynamics of
the driven periodic oscillator �compare with Figs. 7�a� and
7�b��, the noise smeared limit cycle with an initially large
amplitude occurs �Fig. 8�b��. Similarly, as well as in the case
of the van der Pol oscillator, if the large parameter mis-
matches are concerned, the noise smeared cycle is observed

both below and above the PS regime boundary �see Figs.
8�c� and 8�d� and compare it with Figs. 7�c� and 7�d��, with
the destruction of the PS regime corresponding to the cycle
starting enveloping the origin �Fig. 8�d��.

Thus, taking into account the results mentioned above we
can draw a conclusion that the mechanisms of two types of
the chaotic PS destruction are the same as in the case of the
synchronization of periodic oscillations.

III. LYAPUNOV EXPONENTS AND PHASE
SYNCHRONIZATION BOUNDARY

Let us discuss now the problem concerning the relation-
ship between the observed types of PS destruction and tran-
sitions to PS regime described in Ref. �9�. In Ref. �9� three
different types of transitions from asynchronous dynamics to
the PS regime were reported on, depending on the coherence
properties of the chaotic attractors of the uncoupled systems.

The degree of noncoherence of attractors of the autono-
mous oscillators was evaluated in Ref. �9� by means of the
phase diffusion coefficient

����t� − ���t���2� = 2D�t , �10�

where ��t� is the instantaneous phase of chaotic oscillator,
with �·� denoting the ensemble average. For a phase coherent
chaotic attractor the phase increases approximately uni-
formly and the value of D� is rather small, whereas for a
funnel attractor the increase of the phase is strongly nonuni-
form and D� is a few orders larger in magnitude.

As a criterion of distinction of different types of transi-
tions to �from� the PS regime, the correlation between the
dependency of the PS threshold �the critical curve l1� and the
dependencies of Lyapunov exponents �LEs� �the critical
curve l2 corresponds to the transition of one of the zero
Lyapunov exponents to the negative values and the critical
curve l3 corresponds to passing through zero of one of the
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FIG. 7. �Color online� The phase trajectories of the driven van
der Pol oscillator on the rotating plane �x� ,y�� for the small �a ,b�
and large �c ,d� parameter mistuning, the A values having been se-
lected just above ��a� and �c�� and below ��b� and �d�� the PS bound-
ary. �a� and �c� correspond to the synchronization regime. �b� and
�d� illustrate the asynchronous behavior.
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positive Lyapunov exponents� on the coupling strength has
been used. The types of transitions described in Ref. �9� were
the following.

�I� Both uncoupled oscillators are characterized by the
phase coherent chaotic attractors, therefore the value of the
diffusion of phase D� is small �e.g., D�10−3 for the system
considered in Ref. �9��. In this case, the PS regime is as-
sumed to occur immediately after the transition of one of the
zero Lyapunov exponents to a negative value, i.e., the critical
curves l1 and l2 are close to each other, curve l2 preceding
curve l1.

�II� Both chaotic attractors of the uncoupled oscillators
are funnel, and the phase diffusion takes the intermediate
values in comparison with types I and III. In Ref. �9� the
values of D�10−3–10−1 were reported for this type of tran-
sition. The critical curves l1 and l2 are supposed to be clearly
separated, both lying below the critical curve l3.

�III� The uncoupled oscillators considered are character-
ized by highly incoherent chaotic attractors, and the phase
diffusion is rather strong �for the system considered in Ref.
�9� D� exceeds 10−1�. In this case, the critical curve l1 is
expected to lie above both curves l2 and l3, i.e., the PS re-
gime occurs after one of the positive Lyapunov exponents
passes to negative values.

So, Lyapunov exponents seem to be important to distin-
guish between different types of transitions to �from� the PS
regime. Moreover, PS regime arising is usually described in
terms of LEs �see, e.g., Refs. �1–3,9��. Eventually, we have
to compare our results concerning different types of transi-
tions from �to� the PS regime with the ones given in Ref. �9�.
Therefore, let us consider the relation between critical curves
l1, l2, and l3 corresponding to the onset of PS, the transition
of one of the zero Lyapunov exponents to negative values,
and the passing of one of the positive Lyapunov exponents
through zero for the coupled Rössler oscillators �1� on the
��d ,�� parameter plane, respectively �see Fig. 9�.

As it was mentioned above, the autonomous systems �1�
under study with the pointed values of control parameters
�and zero coupling strength� are characterized by the phase
coherent attractors in the whole range of �-parameter varia-
tion. Correspondingly, the phase of chaotic signal increasing
approximately uniformly, the phase diffusion coefficient D�

is rather small and does not exceed the value of 10−3 for all
values of � parameter. Therefore, we must expect that only
the first type of transition described in Ref. �9� is observed
for two unidirectionally coupled oscillators �1�, whereas two
other types �II and III, respectively� cannot be observed for
this system. Nevertheless, having considered the dynamics of
two unidirectionally coupled Rössler systems �1�, we have
observed types II and III of transitions as well as type I �see
Fig. 9�.

As it was mentioned above, the transition of one of the
zero Lyapunov exponents to negative values is supposed to
be closely connected with the onset of PS in the case when
coupled oscillators are characterized by the phase coherent
attractors �see also Refs. �8,9��. Our results refute this state-
ment: Fig. 9 shows that the curve l2 coincides with the curve
l1 �onset of PS� only in a very small range of the parameter
mismatch of coupled oscillators �this range is shown in Fig.
9 in dark gray and marked by the number I�, although un-

coupled both the drive and response Rössler systems are
characterized by the phase coherent attractors in the whole
range of the �d-parameter variation. We cannot say that the
transition of one of the zero LEs to negative values deter-
mines PS arising even in the case of the small mismatch of
system parameters. Indeed, for the parameter �d=0.9 sepa-
rating two types of the PS destruction the coupling strength
value �PS�0.099 corresponding to the onset of PS two times
exceeds the �l2

value corresponding to the l2 curve ��l2
�0.05� �see also Fig. 9�. Therefore, we come to the conclu-
sion that the transition of one of the zero LEs to negative
values precedes arising of the PS regime but does not deter-
mine it. We suppose that this transition may be connected
with time scale synchronization �24,25�, but this problem
requires further consideration.

Thus, despite the fact that both interacting chaotic oscil-
lators are characterized by the phase coherent attractors for
zero coupling strength the first type of transition described in
Ref. �9� is observed only in the narrow range of the
�d-parameter values �see Fig. 9�. Moreover, two other types
of transitions, described in Ref. �9� and supposed to corre-
spond to the synchronization of oscillators with initially in-
coherent chaotic attractors, are also observed in the consid-
ered system �1� of oscillators with originally coherent
chaotic attractors. Indeed, in Ref. �9� it was reported that the
case when the boundary of the PS regime arising �curve l1� is
between the critical curves l2 and l3 corresponds to the syn-
chronization of oscillators with funnel chaotic attractors.
Nevertheless, for the considered system �1� this type of tran-
sition takes place in the �d-parameter value ranges shown in
Fig. 9 in light gray and labeled by the number II. Similarly,
the third type of transition described in Ref. �9� and supposed
to correspond to the systems with highly incoherent attrac-
tors �the critical curve l1 lies above both the critical curves l2
and l3� is also observed in Eq. �1� despite the initial coher-
ence of system attractors �white regions III in Fig. 9�.

It should also be noted that the location of the critical
curve l3 on the ��d ;�� plane coincides with the onset of the
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0.2
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0.85 0.95 1.05 ωd

ε

l2

l1

l3

I IIII IIIIII

FIG. 9. �Color online� The critical curves l1, l2, and l3 on the
��d ,�� plane. The critical curve l1 corresponds to the PS boundary.
It is shown in the range of the small parameter mismatch �the bold
solid line� of coupled oscillators as well as in the range of the large
one �the thin solid line�. The dotted line l2 corresponds to the tran-
sition of one of the zero Lyapunov exponents to negative values.
The dashed line l3 taken from our previous work �10� corresponds
to zero crossing of one of the positive Lyapunov exponents. The
parameter plane is divided into three regions according to three
types of transitions to phase synchronization described in Ref. �9�
�regions I, II, and III, respectively�
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generalized synchronization �GS� regime �26–28�. The
mechanisms determining the location of the GS boundary on
the parameter plane have been considered for unidirection-
ally coupled Rössler systems �1� in our previous paper �10�
with the help of the modified system approach �11�. Based on
the results given in Ref. �10� we can make a decision that the
location of the GS boundary �and, correspondingly, the criti-
cal curve l3� does not relate with PS phenomenon.

Thus, we come to the conclusion that for two unidirec-
tionally coupled Rössler oscillators �1� two types of the PS
destruction are possible dependent on the system parameter
mismatch. Of course, one can distinguish three types of the
PS destruction according to the location of the PS regime
boundary and critical curves l2 and l3 on the parameter plane,
but there is no reason for doing that. Contrary to distinguish-
ing PS destruction types between two classes �when there are
well-known physical mechanisms determining such an ap-
proach�, the consideration of three types of transitions to PS
based on the locus of the critical curves l1,2,3 on the param-
eter plane does not seem to be reasonable, since the positions
of l2,3 curves are caused by different mechanisms, which do
not concern the PS phenomenon.

IV. PHASE SYNCHRONIZATION DESTRUCTION
IN THE CHAOTIC SYSTEMS WITH INITIALLY

INCOHERENT CHAOTIC ATTRACTORS

Since the behavior of unidirectionally coupled Rössler
systems has been examined we came to the conclusion that
for the oscillators with initially phase coherent attractors �1�
two types �rather than three� of the PS destruction should be
distinguished, it is quite reasonable to learn what types of PS
destruction may be observed if two oscillators with initially
incoherent chaotic attractors are considered. To clarify this
point we have studied two mutually coupled Rössler sys-
tems,

ẋ1,2 = − �1,2y1,2 − z1,2,

ẏ1,2 = �1,2x1,2 + ay1,2 + d�y2,1 − y1,2� ,

ż1,2 = 0.1 + z1,2�x1,2 − 8.5� , �11�

from the point of view of the concept discussed in Secs. I
and II. Note, it is the system that we considered in Ref. �9�,
for which three types of transitions connected with the attrac-
tor coherence properties and critical curves location had been
described �Fig. 10�.

The control parameter values of the systems �11� have
been selected the same as they were given in Ref. �9�. In Eq.
�11� d is the coupling strength, �1=0.98, �2=1.02, and the
parameter a� �0.15;0.3� determines the topology of chaotic
attractors. It is known that when a exceeds the critical value
ac �ac1�0.186 for �1 and ac2�0.195 for �2� the chaotic
attractor of the autonomous Rössler system becomes inco-
herent Ref. �9�. Following Ref. �9� the phase ��t� has been
defined as the rotation angle �=arctan�ẏ / ẋ� on the plane
�ẋ ; ẏ� to study PS of the systems with initially funnel attrac-
tors.

Having studied the behavior of two mutually coupled
Rössler systems �11� along the boundary of PS regime on the
plane �a ,d� given in Ref. �9�, we have also found two sce-
narios of the PS regime destruction described in Sec. I as
well as for the case of two unidirectionally coupled oscilla-
tors �1�. For small values of a parameter �a�a*�0.205� the
first type of the PS regime destruction takes place when cha-
otic attractors of both systems keep their coherence on the
plane �ẋ , ẏ� both above and below the boundary of PS �Fig.
10�. When a�a* the chaotic attractor of the first system
loses its coherence as soon as the coupling strength d is
below the onset of PS, with the attractor of the second sys-
tem remaining to be phase coherent. Note that a*�ac1,2,
therefore the change of the PS destruction type takes place
when both coupled systems are characterized by the initially
funnel chaotic attractors on the plane �x ,y�.

To make our decision more convincing, we have also cal-
culated the coherence measure � vs coupling parameter d for
two a-parameter values corresponding to both types of the
PS regime destruction, to be exact aI=0.19�a* and aII
=0.21�a* �Fig. 11�. Since the evolution of the chaotic at-
tractors is considered on the velocity plane �ẋ , ẏ� we have
used

� = min
t→+�


ẋ2�t� + ẏ2�t� �12�

instead of Eq. �4�. Evidently, the chaotic attractor of the first
Rössler system remains phase coherent both below and
above the PS boundary for aI=0.19 and loses its coherence
when the PS regime is destroyed in the case of aII=0.21.

The evolution of the chaotic attractor of the first Rössler
system, when the PS regime is destroyed, is shown in Fig.
12. The first type of the PS regime destruction, when the
chaotic attractors are phase coherent both above and below
the PS boundary, is shown in Figs. 12�a� and 12�b�. Figures
12�c� and 12�d� illustrate the second type of transition ac-
companied by the destruction of the coherence of one of the
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0.00

0.10
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d

0.30

I II III

FIG. 10. �Color online� The PS boundary of two coupled
Rössler systems �11�. The bold solid line corresponds to the PS
regime destruction when both chaotic attractors retain their phase
coherence both above and below the synchronization threshold. The
thin line presents the synchronization boundary when the PS de-
struction is accompanied by a break of the attractor coherence. The
change of the type of the PS regime destruction takes place at a*

�0.205. The attractor of the first Rössler system is incoherent in the
region shown in gray. The lower bound of the attractor noncoher-
ence area is shown by the dashed line. The areas corresponding to
three types of transitions to PS regime described in Ref. �9� are
labeled by the numbers I, II, and III, respectively.
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chaotic attractors just below the PS boundary.
Thus, for two coupled systems with initially funnel attrac-

tors, the phase coherence of the chaotic attractor on the ve-
locity plane �ẋ , ẏ� is destroyed in the same way as it was
observed on the plane �x ,y� for the systems �1� with initially
phase coherent attractors.

Taking into account all obtained results we come to the
conclusion that for the system of two mutually coupled
Rössler oscillators with initially phase incoherent attractors
�11� as well as for the oscillators with phase coherent attrac-
tors �1� two types �instead of three� of the PS destruction
should be distinguished. This conclusion is also confirmed
by Fig. 6 given in Ref. �9� where the mean frequency ratio
�1 /�2 versus coupling strength is shown. The behavior of
�1 /�2 is quite different for the first and the second types of
transitions to PS proposed in Ref. �9� but is the same for the
second and the third ones.

V. CONCLUSIONS

We have described two different types of the PS regime
destruction as well as the mechanisms resulting in the de-
struction, which are the same as in the case of the classical
synchronization of periodic oscillators. The first of them is
caused by the loss of the common rhythm of chaotic oscilla-
tions and the second one is caused by the loss of the phase
coherence of the chaotic attractor. These types have been
observed in the systems with initially both phase coherent
and funnel chaotic attractors. The transition of one of the
zero Lyapunov exponents to negative values precedes arising
of the PS regime but does not cause it is the other important
result. Similarly, the passing of one of the positive Lyapunov
exponents through zero does not relate to PS phenomenon.
Therefore, there is no reason to use these LEs for the PS
onset description.

We assume that the number of the possible transitions
from the PS regime to the asynchronous dynamics might not

be limited by only the two types which are described in our
paper. For the more complex systems �e.g., for the system
with the larger dimension of the phase space� the breakdown
of PS may also be associated with global bifurcations, e.g.,
homoclinic orbits, Takens-Bogdanov bifurcation points, etc.
�29�. Nevertheless, we suppose that the two considered types
of the PS regime destruction should be typical for a wide
class of nonlinear systems, e.g., such as Pierce diode �30� or
laser system �16�. In particular, we have observed the same
types of behavior in the vicinity of the PS boundary for the
case of two unidirectionally coupled generators with tunnel
diodes described in Ref. �31�.
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system behavior on the velocity plane �ẋ , ẏ� for aI=0.19 when the
attractor remains phase coherent both above �a� and below �b� the
PS regime boundary. The second scenario of the PS regime destruc-
tion �aII=0.21� accompanied by the phase coherence loss of the
chaotic attractor is shown in �c� and �d�. The behavior of coupled
oscillators is synchronized in �c� when the attractor of the first
Rössler system on the plane �ẋ , ẏ� is phase coherent. Alternatively,
the phase incoherent attractor is shown in �d� after the PS regime
has been destroyed. In the frames the trajectories on the plane �ẋ , ẏ�
near the origin are shown.
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